A discrete divergence free weak Galerkin finite element method for the Stokes equations

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Robust Globally Divergence-free Weak Galerkin Methods for Stokes Equations

This paper proposes and analyzes a class of robust globally divergence-free weak Galerkin (WG) finite element methods for Stokes equations. The new methods use the Pk/Pk−1 (k ≥ 1) discontinuous finite element combination for velocity and pressure in the interior of elements, and piecewise Pl/Pk (l = k − 1, k) for the trace approximations of the velocity and pressure on the inter-element boundar...

متن کامل

A weak Galerkin finite element method for the Navier-Stokes equations

In this paper, a weak Galerkin finite element method (WGFEM) is proposed for solving the Navier-Stokes equations (NSEs). The existence and uniqueness of the WGFEM solution of NSEs are established. The WGFEM provides very accurate numerical approximations for both the velocity field and pressure field, even with very high Reynolds numbers. The salient feature is that the flexibility of the WGFEM...

متن کامل

A Weak Galerkin Mixed Finite Element Method for Biharmonic Equations

This article introduces and analyzes a weak Galerkin mixed finite element method for solving the biharmonic equation. The weak Galerkin method, first introduced by two of the authors (J. Wang and X. Ye) in [52] for second order elliptic problems, is based on the concept of discrete weak gradients. The method uses completely discrete finite element functions and, using certain discrete spaces an...

متن کامل

Weak Galerkin Finite Element Method for Second Order Parabolic Equations

We apply in this paper the weak Galerkin method to the second order parabolic differential equations based on a discrete weak gradient operator. We establish both the continuous time and the discrete time weak Galerkin finite element schemes, which allow using the totally discrete functions in approximation space and the finite element partitions of arbitrary polygons with certain shape regular...

متن کامل

A Robust Numerical Method for Stokes Equations Based on Divergence-Free H(div) Finite Element Methods

A computational method based on a divergence-free H(div) approach is presented for the Stokes equations in this article. This method is designed to find velocity approximation in an exact divergence-free subspace of the corresponding H(div) finite element space. That is, the continuity equation is strongly enforced a priori and the pressure is eliminated from the linear system in calculation. A...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Applied Numerical Mathematics

سال: 2018

ISSN: 0168-9274

DOI: 10.1016/j.apnum.2017.11.006